SELF-SIMILAR VARIABLE-PRESSURE COMBUSTION
OF SYMMETRIC POWDER PARTICLES

Yu. A, Gostintsev UDC 534.24

In prolonged combustion of symmetric powder particles (lamellar, cylindrical, or spherical), the tem-
perature distribution inside a particle no longer "remembers” the thermal conditions created during the ig-
nition process. Therefore, in principle, establishment of self-similar conditions of unsteady combustion
can be expected in prolonged combustion of powder particles,

It will be seen below that such conditions are produced by the time variation of pressure if the pres-
sure increases to a certain maximum as the particle burns up and then drops to zero,

According to the phenomenological model of unsteady powder combustion [1, 2], this problem is de-
scribed by the system of equations [3, 4]
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Here, the coordinate origin is located on the symmetry axis of the particle; s =0, 1, 2 for a plate, a
cylinder, or a sphere, respectively, and R(t) is the distance to the burning surface; the expressions for the
surface temperature Tg and the combustion rate are assumed to be known functions of the pressure p and
the surface temperature gradient in the condensed phase (k-phase).

The following dimensionless variables are introduced:
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where the subscript 0 denotes the parameters characterizing the combustion of a semiinfinite powder
volume at the initial temperature T;, the surface temperature Tg,, and the pressure p;.

System (1) assumes the following forms.

o 1 3 90
WZFTE‘<ES.795—>, 0SESH(T) (2)
3¢

e =0 for £=0, %=0,(9 for E=8(1)
a6
—‘7=W(~W1'~P)q ﬂ=ﬂ(’f)
The initial condition concerning the temperature distribution is absent in (2), since self-similar con-

ditions are contemplated. We shall seek the solution of the thermal conductivity equation in (2) among the
class of functions
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We obtain
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It is evident that, if
8dé/dv = — 4A = const (4)

{the combustion-rate increment is inversely proportional to half the present value of the particle's thick-
ness), the nonstationary Fourier equation from (1) is reduced to an ordinary differential equation:
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go that a self-similar temperature distribution occurs in the k-phase.

With the substitution of variables
f= £1-5Y2, (), z=1n% y =24z = 2An?

(5) can be reduced to a degenerate hypergeometric equation,
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the solution of which is expresged in terms of Pochhammer functions {F,(a, ¥, y). In terms of the initial
variables f and 7, this solution has the following form for a plate (s = 0) and a sphere (s = 2):
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while, for a cylinder (s = 1),
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The general solution for a self-similar temperature distribution in a lamellar, cylindrical, or spheri-
cal particle follows on the basis of finiteness of f for 5 = 0 and the boundary condition f(1) =1:
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For the surface temperature gradient ¢ = 8 4/8 ¢ and the temperature ¢ at the center of the particle
we have from (6)
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Let us find the pressure change securing the combustion rate and the surface temperature required
by (2) and (4). We assume that the dependences u(p, Ty), Tg(p, T;) have been determined experimentally
under steady-state conditions.

Then, the ordinary gradient conversion used for the phenomenological model in [4, 5] transforms

these dependences into
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Let, for instance,

w=up’ exp BT, u =D exp (—E/ RTy)
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L4 Then, in terms of the dimensionless variables, we have
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Fig.1 Considering that [¢ g — 1| « 1.0, we rewrite Eq. (10) in approximate
form, as was done in [5],
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By substituting here (3) and (4), we find the relationships between A and B and between m and n
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With an allowance for (11), expression (8) for the temperature distribution assumes the following form:
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As an example, Fig. 1 shows the solution of (12) for self~similar combustion of a plate (s = 0) for n =
5 and 10 and A = 0.5, We now find from (7), (9), and (11) the pressure change corresponding to these com-
bustion conditions:

44 \1/v 4A\t/n B;
n= (5 ) e [ (50" 2]
JFy (@ 1) [2n, (3 4-35) /2, 24)
By =B T — 191 — S Ty o, (T 2 24) ] (13)

Analysis of (13) shows that, with a reduction in the size of the particle, the pressure increases to a
certain maximum value
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and then drops to zero as the particle burns up completely. For ordinary fuels, n = E(Tg, — Ty)/(RTg0%) > 1;
as n increases, the pogition of the pressure maximum shifts toward smaller particle dimensions, while, for
n— « (fuel with a constant temperature at the burning surface), we obtain the limiting law of unboundedly
increasing pressure 7 ~ 61/V.

If we change the initial point in measuring time in the above problem and pass to infinite present
dimensions of the particle, we obtain the law of pressure variation in time 7 ~ 71 -1/ 2V which is character-
istic for self-similar combustion of a semiinfinite fuel region. This problem was considered in [1, 5].

The author is grateful to V, B, Librovich, Yu. S. Ryazantsev, S.S. Novikov, and A. G, Istratov for the
discussion and their remarks,
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